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1. Introduction

Estimation of large covariance matrices, particularly in situations where the data dimension

p is comparable to or larger than the sample size n, has attracted a lot of attention recently.

The abundance of high-dimensional data is one reason for the interest in the problem: gene

arrays, fMRI, various kinds of spectroscopy, climate studies, and many other applications

often generate very high dimensions and moderate sample sizes. Another reason is the

ubiquity of the covariance matrix in data analysis tools. Principal component analysis

(PCA), linear and quadratic discriminant analysis (LDA and QDA), inference about the

means of the components, and analysis of independence and conditional independence in

graphical models all require an estimate of the covariance matrix or its inverse, also known

as the precision or concentration matrix. Finally, recent advances in random matrix theory –

see Johnstone (2001) for a review, and also Paul (2007) – allowed in-depth theoretical studies

of the traditional estimator, the sample (empirical) covariance matrix, and showed that

without regularization the sample covariance performs poorly in high dimensions. These

results helped stimulate research on alternative estimators in high dimensions.

Many alternatives to the sample covariance matrix have been proposed. A large class

of methods covers the situation where variables have a natural ordering, e.g., longitudinal

data, time series, spatial data, or spectroscopy. The implicit regularizing assumption un-

derlying these methods is that variables far apart in the ordering have small correlations (or

partial correlations, if the object of regularization is the concentration matrix). Methods

for regularizing covariance by banding or tapering have been proposed by Bickel and Levina

(2004) and Furrer and Bengtsson (2007). Bickel and Levina (2006) showed consistency of

banded estimators in the operator norm under mild conditions as long as (log p)/n → 0, for

both banding the covariance matrix and the Cholesky factor of the inverse discussed below.

When the inverse of the covariance matrix is the primary goal and the variables are

ordered, regularization is usually introduced via the modified Cholesky decomposition,

Σ−1 = LT D−1L.

Here L is a lower triangular matrix with ljj = 1 and ljj′ = −φjj′ , where φjj′ , j′ < j is the
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coefficient of Xj′ in the population regression of Xj on X1, . . . ,Xj−1, and D is a diagonal

matrix with residual variances of these regressions on the diagonal. Several approaches

to regularizing the Cholesky factor L have been proposed, mostly based on its regression

interpretation. A k-banded estimator of L can be obtained by regressing each variable

only on its closest k predecessors; Wu and Pourahmadi (2003) proposed this estimator and

chose k via an AIC penalty. Bickel and Levina (2006) showed that banding the Cholesky

factor produces a consistent estimator in the operator norm under weak conditions on the

covariance matrix, and proposed a cross-validation scheme for picking k. Huang et al.

(2006) proposed adding either an l2 (ridge) or an l1 (lasso) penalty on the elements of L

to the normal likelihood. The lasso penalty creates zeros in L in arbitrary locations, which

is more flexible than banding, but (unlike in the case of banding) the resulting estimate of

the inverse may not have any zeros at all. Levina et al. (2007) proposed adaptive banding,

which, by using a nested lasso penalty, allows a different k for each regression, and hence

is more flexible than banding while also retaining some sparsity in the inverse. Bayesian

approaches to the problem introduce zeros via priors, either in the Cholesky factor (Smith

and Kohn, 2002) or in the inverse itself (Wong et al., 2003).

There are, however, many applications where an ordering of the variables is not avail-

able: genetics, for example, or social and economic studies. Methods that are invariant

to variable permutations (like the covariance matrix itself) are necessary in such applica-

tions. Regularizing large covariance matrices by Steinian shrinkage of eigenvalues has been

proposed early on (Haff, 1980; Dey and Srinivasan, 1985). More recently, Ledoit and Wolf

(2003) proposed a way to compute an optimal linear combination of the sample covariance

with the identity matrix, which also results in shrinkage of eigenvalues. Shrinkage estima-

tors are invariant to variable permutations but they do not affect the eigenvectors of the

covariance, only the eigenvalues, and it has been shown that the sample eigenvectors are

also not consistent when p is large (Johnstone and Lu, 2004). Shrinking eigenvalues also

does not create sparsity in any sense. Sometimes alternative estimators are available in the

context of a specific application – e.g., for a factor analysis model Fan et al. (2006) develop

regularized estimators for both the covariance and its inverse.

Our focus here will be on sparse estimators of the concentration matrix. Sparse con-

centration matrices are widely studied in the graphical models literature, since zero partial

correlations imply a graph structure. The classical graphical models approach, however, is
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different from covariance estimation, since it normally focuses on just finding the zeros. For

example, Drton and Perlman (2007) develop a multiple testing procedure for simultaneously

testing hypotheses of zeros in the concentration matrix. There are also more algorithmic

approaches to finding zeros in the concentration matrix, such as running a lasso regres-

sion of each variable on all the other variables (Meinshausen and Bühlmann, 2006), or the

PC-algorithm (Kalisch and Bühlmann, 2007). Both have been shown to be consistent in

high-dimensional settings, but none of these methods supply an estimator of the covariance

matrix. In principle, once the zeros are found, a constrained maximum likelihood estimator

of the covariance can be computed (Chaudhuri et al., 2007), but it is not clear what the

properties of such a two-step procedure would be.

Two recent papers, d’Aspremont et al. (2007) and Yuan and Lin (2007), take a penalized

likelihood approach by applying an l1 penalty to the entries of the concentration matrix.

This results in a permutation-invariant loss function that tends to produce a sparse estimate

of the inverse, but in order to obtain a bona fide positive-definite estimator, d’Aspremont

et al. (2007) and Yuan and Lin (2007) have to use semi-definite programming algorithms

(Nesterov’s method and the max-det algorithm, respectively). Both of these are computa-

tionally intensive and do not scale well with dimension, particularly the max-det algorithm,

which uses interior point convex optimization. Yuan and Lin (2007) also provide an asymp-

totic analysis of this estimator, but only in the fixed p, large n case, which leaves the

question of high-dimensional behavior unanswered.

This paper makes two main contributions. First, we analyze the estimator resulting

from penalizing the normal likelihood with the l1 penalty on the entries of the concentration

matrix (we will refer to this estimator as SPICE – Sparse Permutation Invariant Covariance

Estimator). We give an explicit convergence rate in the Frobenius norm allowing both p

and n to grow and show that the rate depends on how sparse the true concentration matrix

is. While the rate is not quite as good as that of banding (Bickel and Levina, 2006),

this method does not require an ordering of the variables or assumptions on correlation

decay, and still provides an improvement on the sample covariance matrix. A variation of

the method which works with the correlation matrix shows somewhat better behavior in

the operator norm, but is consistent with the first method in the Frobenius norm. The

second contribution of the paper is an optimization algorithm that avoids semi-definite

programming and automatically returns a positive-definite estimator. The main idea of the
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algorithm is to parametrize the concentration matrix using the Cholesky decomposition, but,

unlike other estimation methods that rely on the Cholesky decomposition, our algorithm is

invariant under variable permutations. The algorithm reduces to solving (many) systems

of linear equations, and thus scales better with dimension than semi-definite programming

algorithms.

The rest of the paper is organized as follows: Section 2 summarizes the SPICE approach

in general, and presents consistency results. The Cholesky-based computational algorithm,

along with a discussion of optimization issues, is presented in Section 3. Section 4 presents

numerical results for SPICE and a number of other methods, for simulated data and a real

example on classification of colon tumors using gene expression data. Section 5 concludes

with discussion.

2. Analysis of the SPICE method

We assume throughout that we observe X1, . . . ,Xn, i.i.d. p-variate normal random variables

with mean 0 and covariance matrix Σ0, and write Xi = (Xi1, . . . ,Xip)
T . Let Σ0 = [σ0ij ],

and Ω0 = Σ−1
0 be the inverse of the true covariance matrix. For any matrix M = [mij ],

we write |M | for the determinant of M , tr(M) for the trace of M , and ϕmax(M) and

ϕmin(M) for the largest and smallest eigenvalues, respectively. We write M+ = diag(M)

for a diagonal matrix with the same diagonal as M, and M− = M −M+. In the asymptotic

analysis, we will use the Frobenius matrix norm ‖M‖2
F =

∑

i,j m2
ij , and the operator norm

(also known as matrix 2-norm), ‖M‖2 = ϕmax(MMT ). We will also write | · |1 for the l1

norm of a vector or matrix vectorized, i.e., for a matrix |M |1 =
∑

i,j |mij |.
It is easy to see that under the normal assumption the negative log-likelihood, up to a

constant, can be written in terms of the concentration matrix as

ℓ(X1, . . . ,Xn; Ω) = tr(ΩΣ̂) − log |Ω|,

where

Σ̂ =
1

n

n∑

i=1

(
Xi − X̄

)(
Xi − X̄

)T

is the sample covariance matrix.

We define the SPICE estimator Ω̂λ of the inverse covariance matrix as the minimizer of
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the penalized negative log-likelihood,

Ω̂λ = arg min
Ω≻0

{
tr(ΩΣ̂) − log |Ω| + λ|Ω−|1

}
(1)

where λ is a non-negative tuning parameter, and the minimization is taken over symmetric

positive definite matrices.

The SPICE estimator is identical to the lasso-type estimator proposed by Yuan and Lin

(2007), and very similar to the estimator of d’Aspremont et al. (2007) (they used |Ω|1 rather

than |Ω−|1 in the penalty). The loss function is invariant to permutations of variables and

should encourage sparsity in Ω̂ due to the l1 penalty applied to its off diagonal elements.

We make the following assumptions about the true model:

A1: Let the set S = {(i, j) : Ω0ij 6= 0, i 6= j}. Then card(S) ≤ s.

A2: ϕmin(Σ0) ≥ k > 0, or equivalently ϕmax(Ω0) ≤ 1/k.

A3: ϕmax(Σ0) ≤ k.

Note that assumption A2 guarantees that Ω0 exists. Assumption A1 is more of a def-

inition, since it does not stipulate anything about s (s = p(p − 1)/2 would give a full

matrix).

Theorem 1. Let Ω̂λ be the minimizer defined by (1). Under A1, A2, A3, if λ ≍
√

log p
n ,

‖Ω̂λ − Ω0‖F = OP

(√

(p + s) log p

n

)

. (2)

The theorem can be restated, more suggestively, as

‖Ω̂λ − Ω0‖2
F

p
= OP

((

1 +
s

p

)
log p

n

)

. (3)

The reason for the second formulation (3) is the relation of the Frobenius norm to the

operator norm, ‖M‖2
F /p ≤ ‖M‖2 ≤ ‖M‖2

F .

In the proof, we will need a lemma of Bickel and Levina (2006) (Lemma 3) which is

based on a large deviation result of Saulis and Statulevičius (1991). We state the result

here for completeness.

Lemma 1. Let Zi be i.i.d. N (0,Σp) and ϕmax(Σp) ≤ k < ∞. Then, if Σp = [σab],

P
[
|

n∑

i=1

(ZijZik − σjk)| ≥ nν
]
≤ c1 exp(−c2nν2) for |ν| ≤ δ (4)
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where c1, c2 and δ depend on k only.

Proof of Theorem 1. Let

Q(Ω) = tr(ΩΣ̂) − log |Ω| + λ|Ω−| − tr(Ω0Σ̂) + log |Ω0| − λ|Ω−
0 |1

= tr
[
(Ω − Ω0)(Σ̂ − Σ0)

]
− (log |Ω| − log |Ω0|) + tr

[
(Ω − Ω0)Σ0

]
+ λ(|Ω−|1 − |Ω−

0 |1) (5)

Our estimate Ω̂ minimizes Q(Ω), or equivalently ∆̂ = Ω̂−Ω0 minimizes G(∆) ≡ Q(Ω0 +∆).

Note that we suppress the dependence on λ in Ω̂ and ∆̂.

Now, using the integral form of the Taylor expansion gives

log |Ω0 + ∆| − log |Ω0| =
∑

i,j

∆ijσ0ij −
1

2
∆̃T
[ ∫ 1

0

(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv
]

∆̃ (6)

where ⊗ is the Kronecker product (if A = [aij ]p1×q1
, B = [bkl]p2×q2

, then A ⊗ B =

[aijbkl]p1p2×q1q2
), and ∆̃ is ∆ vectorized to match the dimensions of the Kronecker product.

By symmetry of ∆ and Σ0,

∑

i,j

∆ijσ0ij = tr(Ω − Ω0)Σ0 . (7)

Therefore, we may write (5) as,

G(∆) =tr
(
∆(Σ̂ − Σ0)

)
+

1

2
∆̃T
[ ∫ 1

0

(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv
]

∆̃

+ λ(|Ω−
0 + ∆−|1 − |Ω−

0 |1) (8)

For an index set A and a matrix M = [mij ], write MA ≡ [mijI((i, j) ∈ A)], where I(·)
is an indicator function. Recall S = {(i, j) : Ω0ij 6= 0, i 6= j} and let S be its complement.

Note that |Ω−
0 + ∆−|1 = |Ω−

0S + ∆−
S |1 + |∆−

S
|1, and |Ω−

0 |1 = |Ω−
0S |1. Then the triangular

inequality implies

λ
(
|Ω−

0 + ∆−|1 − |Ω−
0 |1
)
≥ λ(

∣
∣∆−

S
|1 − |∆−

S |1
)

. (9)

Now, using symmetry again as in (7), we write

|tr
(
∆(Σ̂ − Σ0)

)
| ≤

∣
∣
∣

∑

i6=j

(σ̂ij − σ0ij)∆ij

∣
∣
∣+
∣
∣
∣

∑

i

(σ̂ii − σ0ii)∆ii

∣
∣
∣ = I + II. (10)

To bound term I, note that the union sum inequality and Lemma 1 imply that, with

probability tending to 1,

max
i6=j

|σ̂ij − σ0ij | ≤ C1

√

log p

n
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and hence term I is bounded by

I ≤ C1

√

log p

n
|∆−|1. (11)

The second bound comes from the Cauchy-Schwartz inequality and Lemma 1:

II ≤
[

p
∑

i=1

(σ̂ii − σ0ii)
2

]1/2

‖∆+‖F ≤ √
p max

1≤i≤p
|σ̂ii − σ0ii| ‖∆+‖F

≤ C2

√

p log p

n
‖∆+‖F , (12)

also with probability tending to 1.

Consider now the set

Θn(M, ε) = {∆ : ‖∆−‖F = Mrn, ‖∆+‖F = Mtn},

where

rn =

√

s log p

n
→ 0, tn =

√

p log p

n
→ 0.

Our main argument is the following. Note that G is convex, and

G(∆̂) ≤ G(0) = 0 .

Then, if we can show that

inf{G(∆) : ∆ ∈ Θn(M, ε)} > 0 ,

∆̂ must be inside the sphere defined by Θn, and hence

‖∆̂‖F ≤ M(rn + tn) . (13)

Now, take

λ =
C1

ε

√

log p

n
. (14)

By (8),

G(∆) ≥ k2‖∆‖2
F − C1

√

log p

n
|∆−|1 − C2

√

p log p

n
‖∆+‖F + λ(

∣
∣∆−

S
|1 − |∆−

S |1
)

= k2‖∆‖2
F − C1

√

log p

n

(

1 − 1

ε

)

|∆−

S
|1 − C1

√

log p

n

(

1 +
1

ε

)

|∆−
S |1

− C2

√

p log p

n
‖∆+‖F (15)
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The first term comes from a bound on the integral which we will argue separately below.

The second term is always positive, and hence we may omit it for the lower bound. Now,

note that

|∆−
S |1 ≤ √

s‖∆−
S ‖F ≤ √

s‖∆−‖F .

Thus we have

G(∆) ≥ ‖∆−‖2
F

[

k2 − C1

√

s log p

n

(

1 +
1

ε

)

‖∆−‖−1
F

]

+ ‖∆+‖2
F

[

k2 − C2

√

p log p

n
‖∆+‖−1

F

]

= ‖∆−‖2
F

[

k2 − C1(1 + ε)

εM

]

+ ‖∆+‖2
F

[

k2 − C2

M

]

> 0 (16)

for M sufficiently large.

It only remains to check the bound on the integral term in (8). Recall that ϕmin(M) =

min‖x‖=1 xT Mx. After factoring out the norm of ∆̃, we have, for ∆ ∈ Θn,

ϕmin

(∫ 1

0

(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv
)

≥
∫ 1

0

ϕ2
min(Ω0 + v∆)−1dv ≥ min

0≤v≤1
ϕ2

min(Ω0 + v∆)−1

≥ min
{
ϕ2

min(Ω0 + ∆)−1 : ‖∆‖F ≤ M(rn + tn)
}

.

The first inequality uses the fact that the eigenvalues of Kronecker products of symmetric

matrices are the products of the eigenvalues of their factors. Now

ϕ2
min(Ω0 + ∆)−1 = ϕ−2

max(Ω0 + ∆) ≥ (‖Ω0‖ + ‖∆‖)−2 ≥ k2 (17)

with probability tending to 1, since ‖∆‖ ≤ ‖∆‖F = o(1). This establishes the theorem. 2

An inspection of the proof shows that the worst part of the rate,
√

p log p/n, comes from

estimating the diagonal. This suggests that if we were to use the correlation matrix rather

than the covariance matrix, we should be able to get the rate of
√

s log p/n. Indeed, let

Σ0 = WΓW , where Γ is the true correlation matrix, and W is the diagonal matrix of true

standard deviations. Let Ŵ and Γ̂ be the sample estimates of W and Γ, i.e., Ŵ 2 = Σ̂+,

Γ̂ = Ŵ−1Σ̂Ŵ−1. Let K = Γ−1. Define a SPICE estimate of K by

K̂λ = arg min
Ω≻0

{
tr(ΩΓ̂) − log |Ω| + λ|Ω−|1

}
(18)

Then we immediately obtain
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Corollary 1. Under assumptions of Theorem 1,

‖K̂λ − K‖F = OP

(√

s log p

n

)

.

Corollary 1 does not, however, establish whether there is an advantage to switching

to the correlation matrix for estimating Ω0 itself rather than K. It turns out that in the

Frobenius norm it does not make a difference, but it does allow us to get a SPICE result in

the operator norm (matrix 2-norm). As discussed previously by Bickel and Levina (2006),

El Karoui (2007) and others, the operator norm is more appropriate than the Frobenius

norm for spectral analysis, e.g., PCA. It also allows for a direct comparison with banding

rates obtained in Bickel and Levina (2006). Define a correlation-based estimator of the

concentration matrix by

Ω̃λ = Ŵ−1K̂λŴ−1. (19)

Then we have the following result in operator norm.

Theorem 2. Under assumptions of Theorem 1,

‖Ω̃λ − Ω0‖ = OP

(√

(s + 1) log p

n

)

.

Proof of Theorem 2. Write

‖Ω̃λ − Ω0‖ = ‖Ŵ−1K̂λŴ−1 − W−1KW−1‖

≤ ‖Ŵ−1 − W−1‖ ‖K̂λ − K‖ ‖Ŵ−1 − W−1‖

+ ‖Ŵ−1 − W−1‖(‖K̂λ‖ ‖W−1‖ + ‖Ŵ−1‖ ‖K‖)

+ ‖K̂λ − K‖ ‖Ŵ−1‖ ‖W−1‖

where we are using the submultiplicative norm property ‖AB‖ ≤ ‖A‖ ‖B‖ (see, e.g., Golub

and Van Loan (1989)). Now, ‖W−1‖ and ‖K‖ are O(1) by assumptions A2 and A3. Lemma

1 implies that

‖Ŵ 2 − W 2‖ = OP

(√

log p

n

)

, (20)

and since ‖Ŵ−1 − W−1‖ P≍ ‖Ŵ 2 − W 2‖ (where by A
P≍ B we mean A = OP (B) and

B = OP (A)), we have the rate of
√

log p/n for ‖Ŵ−1−W−1‖. This together with Corollary

1 in turn implies that ‖Ŵ−1‖ and ‖K̂λ‖ are OP (1), and the theorem follows. 2

Note that in the Frobenius norm, we only have ‖Ŵ 2−W 2‖ = OP (
√

p log p/n), and thus

the Frobenius rate of Ω̃λ is the same as that of Ω̂λ.
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3. The Cholesky-based SPICE algorithm

In this section, we develop an iterative algorithm for the computation of Ω̂λ in (1). Recall

that the objective function f is given by:

f(Ω) = tr(ΩΣ̂) − log |Ω| + λ|Ω−|1 (21)

The objective function is convex in the elements of Ω and the algorithm finds Ω̂ by

iteratively approximating the root point of ∇f(Ω). Our strategy is to re-parameterize the

objective (21) using the Cholesky decomposition of Ω. Rather than using the modified

Cholesky decomposition with its regression interpretation, as has been standard in the

literature, we simply write

Ω = TT T,

where T = [tij ] is a lower triangular matrix. We can still use the regression interpretation

if needed, by writing

tjj′ = − φjj′

√
djj

, j′ < j

tjj =
1

√
djj

, (22)

where φjj′ is the coefficient of Xj′ in the regression of Xj on X1, . . . ,Xj−1, and djj is the

corresponding residual variance.

If we re-parameterize f in terms of T , the estimator will automatically be positive

definite. To minimize the objective with respect to T , we use a quadratic approximation

to f , take derivatives, and then iteratively solve a sequence of linear systems of equations

involving groups of parameters in the Cholesky factor. Here we outline the main steps of

the algorithm, and leave the full derivation for the Appendix.

In a slight abuse of notation, we write X for the n × p data matrix where each column

has already been centered by its sample mean. The three terms in (21) can be expressed as
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a function of T as follows:

tr(ΩΣ̂) =
1

n

n∑

i=1

p
∑

j=1

(
j
∑

k=1

tjkXik

)2

(23)

log |Ω| = 2

p
∑

j=1

log tjj (24)

|Ω−|1 = 2
∑

j′>j

∣
∣
∣
∣
∣
∣

p
∑

k=j′

tkj′tkj

∣
∣
∣
∣
∣
∣

(25)

The second step is to use quadratic approximations for |u| and log(u), shown in (26)

and (27), respectively. Since the algorithm is iterative, u(k) denotes the value of u from the

previous iteration, and u(k+1) is the value at current iteration.

|u(k+1)| ≈ (u(k+1))2

2|u(k)| +
|u(k)|

2
(26)

log u(k+1) ≈ 2
u(k+1)

u(k)
− 1

2

(u(k+1))2

(u(k))2
− 3

2
+ log(u(k)) (27)

The quadratic approximation to f allows us to easily take derivatives of f with respect

to current values of the parameters in T as we plug in values from the previous iteration as

constants. Still, for the derivatives to be linear in the parameters, we have to further separate

parameters in T into groups defined by the columns of T , with parameters grouped into

vectors θc = (tcc, tc+1,c, . . . , tpc)
T
. The motivation for this grouping is to eliminate product

terms in (25) between parameters in the same group, yielding linear equations after taking

partial derivatives with respect to θc.

The algorithm requires an initial value T̂ (0), which corresponds to Ω̂(0). If the sample

covariance Σ̂ is non-degenerate, which is generally the case for p < n, one could simply

set Ω̂(0) = Σ̂−1. More generally, we found the following simple strategy to work well:

approximate φjj′ in (22) by regressing Xj on Xj′ alone, for j′ = 1, . . . , j − 1, and then

compute T̂ (0) using (22).

The Algorithm:

Step 0. Initialize T̂ = T̂ (0) and Ω̂(0) = (T̂ (0))T T̂ (0).

Step 1. For each group c = 1, . . . , p, solve ∇θc
f(T ) = 0 to find θ̂c and update column c

of T̂ .

Step 2. Repeat Step 1 until convergence of T̂ and set T (k+1) = T̂ .

Step 3. Set Ω̂(k+1) = (T (k+1))T T (k+1) and repeat Steps 1-3 until convergence of Ω̂.
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At first glance, Step 2 appears redundant. However, our approximations use values of

Ω̂(k), and we found it faster to sweep through the columns of T̂ till convergence without con-

tinuously updating the product T̂T T̂ . One could also say that Step 2 is needed because we

only take partial derivatives ∇f with respect to one group of parameters at a time, holding

all other parameters fixed; and Step 3 is needed because of the quadratic approximations

for |u| and log u.

Note that the quadratic approximation (Step 3) is a standard technique in optimization

and it has been in the statistics literature to handle lasso-type penalties, for example, Fan

and Li (2001) and Huang et al. (2006). The iterative strategy in Step 2 is similar to the

“shooting” method as in Fu (1998) and Friedman et al. (2007). The only difference is that

the standard “shooting” method updates one parameter at a time, while we divide the

parameters into disjoint “blocks” and update a block of parameters simultaneously. Since

at each iteration the value of the objective function decreases, convergence is guaranteed.

Essentially, each iteration of the algorithm is equivalent to minimizing a normal like-

lihood penalized with a weighted ridge penalty. The penalty weights are inversely pro-

portional to the magnitude of the off-diagonal elements of Ω̂(k). For sufficiently large λ,

off-diagonal elements of Ω̂(k) will approach zero as k increases. Computationally, we avoid

infinite weights by setting off-diagonal elements of Ω̂(k) to a small pre-set tolerance value

(ε = 10−10) if their magnitude falls below this value. After convergence, we replace these

thresholded elements of Ω̂(k) with zeros.

In practice, we found that working with the correlation matrix as described in Theorem

2 is slightly better than working with the covariance matrix, although the differences are

fairly small. Still, in all the numerical results we standardize the variables first and then

rescale our estimate by the sample standard deviations of the variables.

Finally, like any other penalty-based approach, SPICE requires selecting the tuning

parameter λ. In simulations, we generate a separate validation dataset, and select λ by

maximizing the normal likelihood on the validation data with Ω̂λ estimated from the training

data. Alternatively, one can use 5-fold cross-validation, which we do for the real data

analysis. There is some theoretical basis for selecting the tuning parameter in this way –

see Bickel and Levina (2007).
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4. Numerical Results

In this section, we compare the performance of SPICE to other estimators using simulated

and real data. Other permutation-invariant estimators we consider are the sample covari-

ance itself and the shrinkage estimator of Ledoit and Wolf (2003). Neither of these methods

introduces any sparsity in the estimator, so while they may be able to produce reasonable

estimates under an overall estimation loss, there is no hope of recovering a sparse structure.

We also include the Lasso regularization of the Cholesky factor proposed by Huang et al.

(2006), which we will refer to simply as Lasso. They also use a normal likelihood loss,

and the only difference from SPICE is that their penalty is on the entries of the modified

Cholesky factor L rather than the concentration matrix itself, λ
∑

j>j′ |φjj′ |. While this

method is not strictly invariant to permutations, it does allow zeros in arbitrary locations

in L, so it can potentially produce reasonable estimates under variable permutations.

4.1. Simulations

In simulations, we concentrate on comparing performance on a sparse concentration matrix.

We construct two variable orderings under the same model: one where the Cholesky factor

is also very sparse, and one where the Cholesky factor has no zeros at all, even though the

concentration matrix itself is sparse. The first model is defined through the elements of its

modified Cholesky factors L and D:

(a) Ω1: φj1 = 0.8; φjj′ = 0, j′ > 1; dj = 0.01. This corresponds to a process generated by

X1 = ε1, Xj = 0.8X1 + εj for j = 2, . . . , p, with εj independent N(0, dj).

(b) Ω2 = PT Ω1P , where P is a permutation matrix reversing the order of the variables

from X1,X2, . . . ,Xp to Xp,Xp−1, . . . ,X1. Under this model, φjj′ 6= 0 for all j, j′.

Both Ω1 and Ω2 are sparse (see Figure 1 (a),(d)) but only Ω1 has a sparse Cholesky factor.

For both covariance models, we generated n = 100 multivariate normal training observations

and a separate set of 100 validation observations. We considered two different values of p,

30 and 100. The estimators were computed on the training data, with tuning parameters

for SPICE and Lasso selected by minimizing the normal likelihood on the validation data.

Using these values of the tuning parameters, we computed the estimated concentration

matrix on the training data and compared it to the population concentration matrix.
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We evaluate the concentration matrix estimation performance using five different mea-

sures. The first three are matrix norm losses, computed as

∆(Ω̂,Ω) =
‖Ω̂ − Ω‖
‖Ω‖

where the norm ‖ · ‖ is either the operator norm, the Frobenius norm, or the matrix 1-norm

(‖M‖1 = maxj

∑

i |mij |). We also compute the Kullback-Leibler loss as defined by Yuan

and Lin (2007),

∆KL(Ω̂,Ω) = tr
(

ΣΩ̂
)

− log
∣
∣
∣ΣΩ̂

∣
∣
∣− p (28)

and the quadratic loss for the concentration matrix,

∆Q(Ω, Ω̂) = tr
(

ΣΩ̂ − I
)2

. (29)

Note that all losses are based on Ω̂ and do not require inversion to compute Σ̂, which is

appropriate for a method estimating Ω. The Kullback-Leibler loss was used by Yuan and

Lin (2007) and Levina et al. (2007) to assess performance of methods estimating Ω. Also

note that the Kullback-Leibler loss and the quadratic loss of the concentration matrix are

obtained from the standard entropy and quadratic losses of the covariance matrix (Lin and

Perlman, 1985; Wu and Pourahmadi, 2003; Huang et al., 2006) by reversing the roles of Σ

and Ω.

Results for the two models are summarized in Table 1, which gives the average losses and

the corresponding standard errors over 50 replications. For sample covariance, Ledoit-Wolf’s

estimator, and SPICE, Ω̂1 = Ω̂2, since these estimators are invariant to permutations. For

Lasso, which depends on the ordering, we report results for both Ω̂1 and Ω̂2. As expected,

the Lasso method performs better for Ω1 than Ω2 since Ω2 has a non-sparse Cholesky

factor. SPICE outperforms all its competitors by a large margin under Kullback-Leibler

and quadratic losses. Under matrix norm losses, all estimators except Lasso on Ω2 are fairly

close, with Ledoit-Wolf being best in matrix 1-norm and operator norm. Under Frobenius

loss, SPICE is best for p = 100 and slightly worse when p = 30.

Out of all the estimators we consider, only SPICE and potentially Lasso have the ability

to recognize sparsity in the inverse directly. To assess this, we compared percentages of

true zeros estimated as zeros for SPICE and Lasso (Table 2), which shows that SPICE

identifies a considerably larger percentage of true zeros than the Lasso, even for Ω1. To

show how these vary for each element of the concentration matrix, we show heatmaps of the
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Table 1. Simulations: performance on Ω1 and Ω2.

p Sample Ledoit-Wolf SPICE Lasso Ω̂1 Lasso Ω̂2

Kullback-Leibler loss

30 8.38(0.14) 5.34(0.07) 1.92(0.03) 2.99(0.05) 3.80(0.07)

100 NA 116.64(1.84) 7.02(0.08) 19.13(0.31) 25.56(0.37)

Quadratic loss

30 35.28(0.96) 16.01(0.35) 3.38(0.08) 7.69(0.22) 12.77(0.38)

100 NA 933.29(26.19) 13.15(0.44) 144.23(9.58) 270.24(12.75)

Matrix 1-norm

30 0.74(0.04) 0.66(0.004) 0.73(0.006) 0.65(0.006) 0.72(0.04)

100 NA 0.87(0.001) 0.93(0.001) 0.91(0.003) 3.08(0.24)

Operator norm

30 0.62(0.04) 0.66(0.004) 0.73(0.006) 0.67(0.006) 0.60(0.04)

100 NA 0.87(0.001) 0.93(0.001) 0.92(0.003) 2.75(0.24)

Frobenius norm

30 0.66(0.04) 0.67(0.004) 0.71(0.006) 0.66(0.004) 0.60(0.04)

100 NA 0.97(0.001) 0.92(0.001) 0.92(0.003) 2.72(0.24)

Table 2. Percentage of correctly estimated

zeros in the concentration matrix (average

and SE over 50 replications).

p SPICE Lasso Ω̂1 Lasso Ω̂2

30 48.0 (0.4) 21.0(0.7) 0.86(0.2)

100 64.7 (0.2) 16.8(1.2) 38.0(1.3)

number of zeros identified out of the 50 replications in Figure 1. This model is not easy for

either method, but SPICE still has a substantial advantage over Lasso. Finally, following

Yuan and Lin (2007) we show the average number of false positive and false negative edges

identified in the corresponding graph over the 50 replications (Table 3). False positives are

a much bigger problem for both methods than false negatives, but still, SPICE does better

than Lasso on both false positives and false negatives.
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Table 3. The number of false negative and false positive edges identified by each method

(average and SE over 50 replications). The true number of edges is 29 for p = 30 and 99

for p = 100. The true number of non-edges is 406 for p = 30 and 4851 for p = 100.

False Negatives False Positives

p SPICE Lasso Ω̂1 Lasso Ω̂2 SPICE Lasso Ω̂1 Lasso Ω̂2

30 0.06 (0.04) 0.66(0.11) 0.90(0.13) 212.8(1.8) 320.8(3.0) 402.5(0.68)

100 5.9(0.41) 37.4(1.5) 26.2(0.51) 1714.8(8.8) 3005.4(64) 4034.4(56)

(a) True Ω1 (b) Lasso Ω̂1 (c) SPICE Ω̂1

(d) True Ω2 (e) Lasso Ω̂2 (f) SPICE Ω̂2

Fig. 1. Heatmaps of zeros identified in Ω1 and Ω2 out of 50 replications. White color is 50/50 zeros

identified, black is 0/50.
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4.2. Colon tumor classification example

In this section, we compare performance of the various estimators for LDA classification

of tumors using gene expression data from Alon et al. (1999). In this experiment, colon

adenocarcinoma tissue samples were collected, 40 of which were tumor tissues and 22 non-

tumor tissues. Tissue samples were analyzed using an Affymetrix oligonucleotide array.

The data were processed, filtered, and reduced to a subset of 2,000 gene expression values

with the largest minimal intensity over the 62 tissue samples. Additional information about

the dataset and pre-processing can be found in Alon et al. (1999).

To assess the performance at different dimensions, we reduce the full dataset of 2,000

gene expression values by selecting p most significant genes as measured by the two-sample

t-statistic, for p = 50, 100, 200. Then we use linear discriminant analysis (LDA) to classify

these tissues as either tumorous or non-tumorous. We classify each test observation x to

either class k = 0 or k = 1 using the LDA rule

δk(x) = arg max
k

{

xT Ω̂µ̂k − 1

2
µ̂

T
k Ω̂µ̂k + log π̂k

}

, (30)

where π̂k is the proportion of class k observations in the training data, µ̂k is the sample

mean for class k on the training data, and Ω̂ is an estimator of the inverse of the common

covariance matrix on the training data computed by one of the methods under consideration.

Detailed information on LDA can be found in Mardia et al. (1979).

To create training and test sets, we randomly split the data into a training set of size

42 and a testing set of size 20; following the approach used by Wang et al. (2007), we

require the training set to have 27 tumor samples and 15 non-tumor samples. We repeat

the split at random 100 times and measure the average classification error. The average

errors with standard errors over the 100 splits are presented in Table 4.2. We omit the

sample covariance because it is not invertible with such a small sample size, and include

the naive Bayes classifier instead (where Σ̂ is estimated by a diagonal matrix with sample

variances on the diagonal). Naive Bayes has been shown to perform better than the sample

covariance in high-dimensional settings (Bickel and Levina, 2004).

For an application such as classification, there are several possibilities for selecting the

tuning parameter. Since we have no separate validation data available, we perform 5-

fold cross-validation on the training data. One possibility (columns A in Table 4.2) is to

continue using normal likelihood as a criterion for cross-validation, like we did in simulations.
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Table 4. Averages and SEs of classification errors in % over 100 splits. Tuning parameter for

Lasso and SPICE chosen by (A): 5-fold CV on the training data maximizing the likelihood; (B):

5-fold CV on the training data minimizing the classification error; (C): minimizing the classifica-

tion error on the test data.

Lasso SPICE

p N. Bayes L-W A B C A B C

50 15.8(0.8) 15.2(0.6) 15.3(0.7) 34.3(2.0) 12.0(0.6) 12.1(0.7) 14.7(0.7) 9.0(0.6)

100 20.0(0.8) 16.3(0.7) 19.5(0.8) 38.2(1.4) 16.4(0.7) 18.7(0.8) 16.9(0.9) 9.1(0.5)

200 23.1(1.0) 17.7(0.6) 23.2(1.0) 39.1(1.5) 18.2(0.7) 18.3(0.7) 18.0(0.7) 10.2(0.5)

Another possibility (columns B in Table 4.2) is to use classification error as the cross-

validation criterion, since that is the ultimate performance measure in this case. Table 4.2

shows that for SPICE, both methods of tuning work similarly, whereas for Lasso tuning

using the classification error, somewhat surprisingly, performs very poorly. For reference,

we also include the best error rate achievable on the test data for a given estimator, which

is obtained by selecting the tuning parameter to minimize the classification error on the

test data (columns C in Table 4.2). Again, for each type of tuning SPICE does better than

Lasso.

5. Discussion

We have analyzed a penalized likelihood approach to estimating a sparse concentration

matrix via a lasso-type penalty, and showed that its rate of convergence depends explicitly

on how sparse the true matrix is. This is analogous to results for banding (Bickel and Levina,

2006), where the rate of convergence depends on how quickly the off-diagonal elements of

the true covariance decay, and for thresholding (Bickel and Levina, 2007; El Karoui, 2007),

where the rate also depends on how sparse the true covariance is by various definitions of

sparsity. We conjecture that other structures can be similarly dealt with, and other types

of penalties may show similar behavior when applied to the “right” type of structure – for

example, a ridge, bridge, or other more complex penalty may work well for a model that

is not truly sparse but has many small entries. Investigation of these other structures is a

subject for future work.

While we assumed normality, it can be replaced by a tail condition, analogously to Bickel
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and Levina (2006). The use of normal likelihood is, of course, less justifiable if we do not

assume normality, but it was found empirically that it still works reasonably well as a loss

function even if the true distribution is not normal (Levina et al., 2007).

The Cholesky decomposition of covariance was only considered appropriate when vari-

ables are ordered, and we have shown it to be a useful tool for enforcing positive definiteness

of the estimator even when variables have no natural ordering. Our optimization algorithm

reduced to solving a linear system at each iteration, and we are exploring the possibility that

other loss functions and penalties could also be re-parameterized and optimized similarly,

possibly using different fast modern optimization algorithms.
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Appendix: Derivation of the Algorithm

In this section we give a full derivation of the linear systems involved in the optimization

algorithm. Recall that we have re-parametrized the objective function (21) using (23)–(25).

We divide T into p parameter groups corresponding to columns, compute partial derivatives

with respect to θc = {tlc}p
l=c while holding all other parameters fixed, and solve a linear

system corresponding to setting these partial derivatives to 0. Thus for each column c we

solve Acθc = bc, and our goal here is to derive explicit expressions for Ac and bc.

For simplicity, we separate the likelihood and the penalty parts by writing f(T ) =

ℓ(T ) + P (T ). For the likelihood part, taking the partial derivative with respect to tlc,

1 ≤ c ≤ p, c ≤ l ≤ p and applying the quadratic approximation (27) gives

∂

∂tℓc
ℓ(T ) = −2

∂

∂tℓc

p
∑

j=1

log tjj

︸ ︷︷ ︸

=0 if j 6=c

+
1

n

n∑

i=1

∂

∂tℓc

p
∑

j=1

(
j
∑

k=1

tjkXik

)2

︸ ︷︷ ︸

=0 if j 6=l

= −2I{l = c}
[

2

t0cc

− tcc

(t0cc)
2

]

+ 2

l∑

k=1

tlkσ̂kc

= tlc

[

2σ̂cc + I{l = c} 2

(t0cc)
2

]

+ 2

l∑

k=1, k 6=c

tlkσ̂kc − I{l = c} 4

t0cc

, (31)

where t0cc denotes the value of tcc from the previous iteration, and the last line is simply

collecting the terms for setting up the linear system.

For the penalty part, write Ω = [ωij ]. We use the quadratic approximation (26), which

gives

∂

∂tℓc
P (T ) =

∂

∂tℓc
2λ
∑

j′>j

∣
∣
∣
∣
∣
∣

p
∑

k=j′

tkj′tkj

∣
∣
∣
∣
∣
∣

≈ ∂

∂tℓc

∑

j′>j

λ

|ω0
j′j |

ω2
j′j =

l∑

k=1,k 6=c

λ

|ω0
ck|

∂

∂tℓc
ω2

ck , (32)

since the only nonzero terms in (32) are those for which j′ ≤ l and either j′ = c or j = c.

For 1 ≤ k ≤ l such that k 6= c, we have ∂
∂tℓc

ω2
ck = 2ωcktlk, and collecting terms together we
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get

∂

∂tℓc
P (T ) =

p
∑

q=c

tqc



2λ

l∑

k=1,k 6=c

tlk tqk

|ω0
ck|



 . (33)

Combining together (31) and (33), we have the system of linear systems for parameters

in column c, Acθc = bc. The system has p − c + 1 equations with as many unknowns, and

the elements of the matrix Ac and the vector bc are given, for c ≤ l ≤ p and c ≤ q ≤ p, by

Ac
lq =

l∑

k=1,k 6=c

2λtlk tqk

|ω0
ck|

+ I{q = l}
[

2σ̂cc + I{l = c} 2

(t0cc)
2

]

bc
l = −

l∑

k=1, k 6=c

2tlkσ̂kc + I{l = c} 4

t0cc


